Machine Learning Model Interpretability for Precision Medicine
نویسندگان
چکیده
Interpretability of machine learning models is critical for data-driven precision medicine efforts. However, highly predictive models are generally complex and are difficult to interpret. Here using Model-Agnostic Explanations algorithm, we show that complex models such as random forest can be made interpretable. Using MIMIC-II dataset, we successfully predicted ICU mortality with 80% balanced accuracy and were also were able to interpret the relative effect of the features on prediction at individual level.
منابع مشابه
MediBoost: a Patient Stratification Tool for Interpretable Decision Making in the Era of Precision Medicine
Machine learning algorithms that are both interpretable and accurate are essential in applications such as medicine where errors can have a dire consequence. Unfortunately, there is currently a tradeoff between accuracy and interpretability among state-of-the-art methods. Decision trees are interpretable and are therefore used extensively throughout medicine for stratifying patients. Current de...
متن کاملApplication of the Extreme Learning Machine for Modeling the Bead Geometry in Gas Metal Arc Welding Process
Rapid prototyping (RP) methods are used for production easily and quickly of a scale model of a physical part or assembly. Gas metal arc welding (GMAW) is a widespread process used for rapid prototyping of metallic parts. In this process, in order to obtain a desired welding geometry, it is very important to predict the weld bead geometry based on the input process parameters, which are voltage...
متن کاملConstruction of Fuzzy Systems –Interplay between Precision and Transparency
In recent years, we have witnessed a strong emphasis on high performance and precision of fuzzy systems. Many publications are focused on data driven approaches, i.e., the construction of fuzzy systems from data and applying them in areas like data mining, pattern recognition, prediction or control. In such applications, fuzzy system inevitably must be compared with other inductive methods, lik...
متن کاملInterpreting Classifiers by Multiple Views
Next to prediction accuracy, interpretability is one of the fundamental performance criteria for machine learning. While high accuracy learners have intensively been explored, interpretability still poses a difficult problem. To combine accuracy and interpretability, this paper introduces an framework which combines an approximative model with a severely restricted number of features with a mor...
متن کاملModel-Agnostic Interpretability of Machine Learning
Understanding why machine learning models behave the way they do empowers both system designers and end-users in many ways: in model selection, feature engineering, in order to trust and act upon the predictions, and in more intuitive user interfaces. Thus, interpretability has become a vital concern in machine learning, and work in the area of interpretable models has found renewed interest. I...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016